Acta Cryst. (1996). C52, 1845-1847

# L-Histidyl-L-tyrosinium Dichloride Dihydrate, $C_{15}H_{20}N_4O_4^{2+}.2Cl^-.2H_2O$

THOMAS STEINER

Institut für Kristallographie, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany. E-mail: steiner@chemie.fu-berlin.de

(Received 22 December 1995; accepted 16 February 1996)

### Abstract

The His–Tyr dipeptide is doubly protonated. The positively charged side chain of the histidine residue is tightly coordinated by O and  $Cl^-$  hydrogen-bond acceptors. Both C—H groups of the imidazole ring donate weak hydrogen bonds.

### Comment

The crystal structure analysis of the title compound, (I), was undertaken to establish the system of hydrogen bonds (see Jeffrey & Saenger, 1991), in particular those formed by the imidazole ring of the histidine residue. Since (I) was crystallized from a solution in dilute HCl, the dipeptide in the crystal structure is found as a dication (Fig. 1), with positive charges at the Nterminus atom (N1) and at the histidine side chain. The C-terminus is uncharged. The positive charge is balanced by two Cl<sup>-</sup> ions, and in addition, two water molecules are co-crystallized.



The conformation of the dipeptide is conventional and need not be discussed here. The same is true for the O—H···O, O—H···Cl<sup>-</sup>, N—H···O and N—H···Cl<sup>-</sup> hydrogen bonds (Table 3). Of interest is the intermolecular environment of the histidine side chain (Fig. 2). This positively charged group is tightly coordinated by O and Cl<sup>-</sup> hydrogen-bond acceptors in an almost coplanar arrangement. All imidazole N—H and C—H groups donate hydrogen bonds to these acceptors, those formed by C5—H and N4—H being three-centered (bifurcated). It is quite usual for not only the N—H, but also both C—H groups of protonated histidine side chains, to

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved be involved in hydrogen bonding (e.g. Steiner, 1995; for background reading on C—H···O interactions, see Desiraju, 1991). Also some tyrosine C—H groups and C1—H (*i.e.* the histidine  $C^{\alpha}$ -H) are engaged in C— H···O interactions (Table 3).



Fig. 1. Molecular structure and atom labeling of the title compound. Displacement ellipsoids are drawn at the 50% probability level.



Fig. 2. The hydrogen-bonding pattern around the protonated histidine side chain. Numerical values of  $H \cdots X$  distances (Å) are given for normalized H-atom positions.

C1 C1

Cl CI C1 C1

### **Experimental**

The title dipeptide is commercially available (Sigma) and was crystallized by slow evaporation of a solution in 6% HCl.

### Crystal data

| -                                         |                                   |
|-------------------------------------------|-----------------------------------|
| $C_{15}H_{20}N_4O_4^{2+}.2Cl^2H_2O$       | Cu $K\alpha$ radiation            |
| $M_r = 427.28$                            | $\lambda = 1.54176 \text{ Å}$     |
| Monoclinic                                | Cell parameters from 25           |
| P2 <sub>1</sub>                           | reflections                       |
| a = 6.6813 (4)  Å                         | $\theta = 9.6 - 25.2^{\circ}$     |
| b = 14.7787(9) Å                          | $\mu = 3.249 \text{ mm}^{-1}$     |
| c = 10.2608 (9)  Å                        | T = 293 (2)  K                    |
| $\beta = 96.29 (2)^{\circ}$               | Plate                             |
| $V = 1007.06 (12) \text{ Å}^3$            | $0.50 \times 0.30 \times 0.05$ mm |
| Z = 2                                     | Colorless                         |
| $D_{\rm r} = 1.409 {\rm Mg} {\rm m}^{-3}$ |                                   |
| $D_m$ not measured                        |                                   |
|                                           |                                   |

#### Data collection

| Enraf-Nonius Turbo-CAD-4     | $R_{\rm int} = 0.0233$             |
|------------------------------|------------------------------------|
| diffractometer               | $\theta_{\rm max} = 59.94^{\circ}$ |
| $\omega/2\theta$ scans       | $h = -7 \rightarrow 7$             |
| Absorption correction:       | $k = -16 \rightarrow 0$            |
| see text                     | $l = 0 \rightarrow 11$             |
| 1648 measured reflections    | 3 standard reflections             |
| 1555 independent reflections | frequency: 60 min                  |
| 1522 observed reflections    | intensity decay: 1.3%              |
| $[I > 2\sigma(I)]$           |                                    |

#### Refinement

| Refinement on $F^2$                     | $\Delta \rho_{\rm max} = 0.262 \ {\rm e} \ {\rm \AA}^{-3}$  |
|-----------------------------------------|-------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.0257$        | $\Delta \rho_{\rm min} = -0.194 \ {\rm e} \ {\rm \AA}^{-3}$ |
| $wR(F^2) = 0.0825$                      | Extinction correction: none                                 |
| S = 1.101                               | Atomic scattering factors                                   |
| 1543 reflections                        | from International Tables                                   |
| 340 parameters                          | for Crystallography (1992,                                  |
| All H-atom parameters                   | Vol. C, Tables 4.2.6.8 and                                  |
| refined                                 | 6.1.1.4)                                                    |
| $w = 1/[\sigma^2(F_o^2) + (0.0503P)^2]$ | Absolute configuration:                                     |
| + 0.1026 <i>P</i> ]                     | Flack (1983)                                                |
| where $P = (F_o^2 + 2F_c^2)/3$          | Flack parameter =                                           |
| $(\Delta/\sigma)_{\rm max} = -0.001$    | -0.002(13)                                                  |

### Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

|     | x            | у            | z            | $U_{eq}$   |
|-----|--------------|--------------|--------------|------------|
| C11 | 0.39459 (10) | 0.49999 (5)  | 0.30959 (6)  | 0.0422 (2) |
| Cl2 | 0.37090 (14) | 1.09801 (6)  | 0.12361 (10) | 0.0665 (3) |
| OW1 | -0.1667 (4)  | 0.5847 (2)   | 0.9610(3)    | 0.0648 (7) |
| OW2 | -0.2244 (4)  | 0.4142 (2)   | 0.4933 (3)   | 0.0504 (6) |
| N1  | -0.0358 (4)  | 0.9442 (2)   | 0.9006 (2)   | 0.0360 (5) |
| C1  | 0.1108 (4)   | 0.8912 (2)   | 0.8329 (2)   | 0.0337 (6) |
| C2  | 0.0142 (4)   | 0.8000 (2)   | 0.7926 (2)   | 0.0327 (6) |
| 01  | -0.0866 (3)  | 0.76088 (15) | 0.8686 (2)   | 0.0448 (5) |
| C3  | 0.3071 (4)   | 0.8783 (2)   | 0.9225 (3)   | 0.0364 (6) |
| C4  | 0.2841 (4)   | 0.8386(2)    | 1.0541 (3)   | 0.0311 (6) |
| C5  | 0.2888 (4)   | 0.7330 (2)   | 1.2065 (3)   | 0.0415 (7) |
| C6  | 0.2602 (4)   | 0.8781 (2)   | 1.1703 (3)   | 0.0363 (6) |
| N3  | 0.3001 (3)   | 0.7467 (2)   | 1.0802 (2)   | 0.0386 (5) |
| N4  | 0.2625 (3)   | 0.8108 (2)   | 1.2619 (3)   | 0.0393 (6) |
| N2  | 0.0541 (4)   | 0.7679 (2)   | 0.6784 (2)   | 0.0343 (5) |

| C7  | -0.0100(4)  | 0.6795 (2)   | 0.6296 (3) | 0.0349 (6) |
|-----|-------------|--------------|------------|------------|
| C8  | 0.1381 (4)  | 0.6483 (2)   | 0.5368(3)  | 0.0357 (6) |
| O2  | 0.2651 (3)  | 0.69610(15)  | 0.4991 (2) | 0.0450 (5) |
| 03  | 0.1062 (3)  | 0.56279 (13) | 0.4988 (2) | 0.0440 (5) |
| C9  | -0.2267 (4) | 0.6808 (2)   | 0.5596 (3) | 0.0377 (6) |
| C10 | -0.2434 (4) | 0.7385 (2)   | 0.4379 (3) | 0.0344 (6) |
| C11 | -0.2188 (4) | 0.7024 (2)   | 0.3149 (3) | 0.0381 (6) |
| C12 | -0.2234 (4) | 0.7565 (2)   | 0.2045 (3) | 0.0412 (7) |
| C13 | -0.2504 (4) | 0.8488 (2)   | 0.2168 (3) | 0.0379 (7) |
| C14 | -0.2775 (4) | 0.8855 (2)   | 0.3369(3)  | 0.0417 (7) |
| C15 | -0.2730 (5) | 0.8311(2)    | 0.4460 (3) | 0.0399 (7) |
| 04  | -0.2550(3)  | 0.9008 (2)   | 0.1049(2)  | 0.0517 (6) |

## Table 2. Selected geometric parameters (Å, °)

|          | -         | -        |           |
|----------|-----------|----------|-----------|
| N1—C1    | 1.485 (4) | C7—C8    | 1.518 (4) |
| C1—C3    | 1.529 (4) | С7—С9    | 1.544 (4) |
| C1-C2    | 1.530 (4) | C8—O2    | 1.200 (4) |
| C2-01    | 1.230(3)  | C8—O3    | 1.333 (4) |
| C2N2     | 1.318 (4) | C9—C10   | 1.507 (4) |
| C3—C4    | 1.495 (4) | C10C15   | 1.386 (4) |
| C4C6     | 1.354 (4) | C10-C11  | 1.396 (4) |
| C4—N3    | 1.385 (4) | C11—C12  | 1.384 (4) |
| C5—N4    | 1.302 (4) | C12—C13  | 1.383 (5) |
| C5—N3    | 1.323 (4) | C13—C14  | 1.376 (4) |
| C6—N4    | 1.368 (4) | C13—04   | 1.380 (4) |
| N2—C7    | 1.448 (4) | C14—C15  | 1.376 (5) |
| N1-C1-C3 | 110.5 (2) | C3-C1-C2 | 111.2 (2) |
| N1-C1-C2 | 108.1 (2) |          | . ,       |
|          |           |          |           |

## Table 3. Hydrogen-bonding parameters (Å, °)

Data for normalized H-atom positions are based on bond lengths of O-H = 0.98, N—H = 1.04 and C—H = 1.09 Å.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DH                   | $\mathbf{H} \cdot \cdot \cdot \mathbf{A}$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ | $H_{norm} \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|-------------------------|-----------------------------|--------------------------------|
| OW1-H1W1···Cl2 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.09 (5)             | 2.05 (5)                                  | 3.122 (3)               | 170 (4)                     | 2.15                           |
| OW1—H2W1···O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.67 (6)             | 2.20(6)                                   | 2.841 (3)               | 161 (6)                     | 1.91                           |
| OW2—H1W2···Cl1 <sup>ii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.77 (5)             | 2.50 (5)                                  | 3.254 (3)               | 166 (5)                     | 2.30                           |
| OW2—H2W2···O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.76 (7)             | 2.36(7)                                   | 3.111 (4)               | 169 (6)                     | 2.15                           |
| N1-H1N1···CH <sup>iii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.90(3)              | 2.26(3)                                   | 3.154 (3)               | 170 (3)                     | 2.13                           |
| N1—H2N1···OW1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.97 (5)             | 1.83 (5)                                  | 2,783 (4)               | 170 (4)                     | 1.75                           |
| N1—H3N1····O4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.95 (4)             | 1.92 (4)                                  | 2.761 (3)               | 147 (3)                     | 1.84                           |
| N1—H3N1···O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.95 (4)             | 2.35 (4)                                  | 2.745 (3)               | 105 (3)                     | 2.33                           |
| C1—HC1···OW2 <sup>ini</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.98 (3)             | 2.64 (3)                                  | 3.528 (3)               | 151 (2)                     | 2.55                           |
| C3—H1C3···OW1 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.98 (4)             | 2.82 (4)                                  | 3.444 (4)               | 122 (3)                     | 2.76                           |
| N3—HN3···Cl2 <sup>VI</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.88 (4)             | 2.23 (4)                                  | 3.105 (3)               | 178 (4)                     | 2.07                           |
| N4—HN4···OW2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.73 (4)             | 2.33 (4)                                  | 2.975 (4)               | 148 (4)                     | 2.07                           |
| N4—HN4···O2`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.73 (4)             | 2.47 (4)                                  | 2.965 (3)               | 127 (3)                     | 2.30                           |
| C6—HC6···OW1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.93 (4)             | 2.66 (4)                                  | 3.368 (4)               | 134 (3)                     | 2.55                           |
| C5-HC5···C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.87 (4)             | 2.81 (4)                                  | 3.649 (3)               | 163 (3)                     | 2.60                           |
| C5—HC5···O2`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.87 (4)             | 2.66 (4)                                  | 3.073 (4)               | 110 (3)                     | 2.59                           |
| N2—HN2···OW2 <sup>iii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73 (4)             | 2.37 (4)                                  | 3.084 (4)               | 164 (4)                     | 2.08                           |
| N2—HN2···O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73 (4)             | 2.33 (4)                                  | 2.658 (3)               | 109 (4)                     | 2.25                           |
| O4—HO4···Cl2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.81 (4)             | 2.23 (4)                                  | 3.027 (3)               | 167 (4)                     | 2.07                           |
| C15-HC15···C11 <sup>iii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.86 (4)             | 2.92 (4)                                  | 3.691 (4)               | 150 (3)                     | 2.72                           |
| C12-HC12···OW1 <sup>vii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.02 (4)             | 2.73 (4)                                  | 3.611 (4)               | 145 (3)                     | 2.67                           |
| C12—HC12···O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.02 (4)             | 2.76(4)                                   | 3.661 (3)               | 148 (3)                     | 2.70                           |
| C14—HC14···O3 <sup>iii</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.94 (4)             | 2.56(4)                                   | 3.255 (4)               | 131 (3)                     | 2.46                           |
| 03-H03···Cl1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.05 (5)             | 1.99(5)                                   | 3.027 (2)               | 169 (4)                     | 2.06                           |
| Symmetry codes: (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _1 _ ×               | $\mathbf{v} = 1, 1$                       | (ii) x                  | 1                           |                                |
| $\int \frac{1}{2} $ |                      |                                           |                         |                             |                                |
| $\frac{1}{2}$ , $1 - 2$ , $(1V) - x$ , $y + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{2}, z = z$ | $(\mathbf{v}) \mathbf{x}, \mathbf{y},$    | z + 1; (V1)             | $-x, y - \frac{1}{2},$      | $1 - z; (v_{11})$              |
| x, y, z = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                           |                         |                             |                                |

For technical reasons, the absorption correction mandatory in the case of  $\mu = 3.249 \text{ mm}^{-1}$  could not be applied because the crystal was damaged before its dimensions could be measured; this did not lead to a suspiciously low R value. All Hatom positions were located from difference Fourier maps and refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure:

SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

The author is on leave from the Max-Delbrück-Centrum für Molekulare Medizin, Forschungsgruppe Kristallographie (Professor U. Heinemann), Robert Rössle Strasse 10, D-13122 Berlin, Germany, and thanks Professor W. Saenger for giving him the opportunity to carry out this study in his laboratory. The study was supported by the Deutsche Forschungsgemeinschaft (Sa 196/25-1).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1180). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

- Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Steiner, Th. (1995). Acta Cryst. D51, 93-97.

Acta Cryst. (1996). C52, 1847-1849

# 3-[(2-Phenylsulfonyl)ethenyl]-4H-1-benzopyran-4-one

YU-SHENG CHEN," MASSOOD KHAN, <sup>b</sup> S. NARASINGA RAO,<sup>a\*</sup> M. Krishnaiah<sup>c</sup> and K. V. Narayana Raju<sup>c</sup>

<sup>a</sup>Department of Physics. University of Central Oklahoma, Edmond, Oklahoma 73034, USA, <sup>b</sup>Department of Chemistry, University of Oklahoma, Norman, Oklahoma, USA, and <sup>c</sup>Department of Physics, Sri Venkateswara University, Tirupati, India

(Received 2 January 1996; accepted 11 March 1996)

### Abstract

In the title compound,  $C_{17}H_{12}O_4S$ , the bond distances reflect electron delocalization in the O4-C10=C9-C8=C7 chain. The molecule contains three nearly planar segments, namely, the benzopyranone group, the

phenyl ring and the ethylene group. The sulfonyl plane is inclined at an angle of  $84.6(2)^\circ$  to the plane of the ethylene group, including its immediate substituents, and at an angle of  $14.4(1)^{\circ}$  to the benzopyranone group. In the structure of the related compound 3-[2-(4-chlorophenylsulfonyl)ethenyl]-4H-1-benzopyran-4-one [Krishnaiah, Narayana Raju, Lu, Chen & Narasinga Rao (1995). Acta Cryst. C51, 2429-2430], the corresponding angles are 60.3(2) and  $51.5(2)^{\circ}$ , respectively.

### Comment

Sulfones are compounds in which the S atom is bonded to two C atoms and two terminal O atoms in a tetrahedral arrangement (Truce, Klingler & Brand, 1984). Sulfones have shown activity as antibacterial and antifungal agents. Dapsone has proven effective against leprosy, while diasone is highly effective against streptococcal and pneumococcal infections (Kharasch, Stampa & Nudenberg, 1953). The antifungal activity of some unsaturated sulfones has been found to be dependent upon substituent and stereochemical effects. The title compound, 3-[2-(phenylsulfonyl)ethenyl]-4H-1-benzopyran-4-one, (I), has been observed to display antifungal activity against Curvularia lunata and Furasium oxysporum (Mukundam, 1990).



The crystal and molecular structure of (I) (Fig. 1) has been determined in order to study its stereochemistry and is part of a series of compounds derived from these antifungal agents having different substituents at the 6 position of the 4H-1-benzopyran-4-one ring. Our aim is to observe the influences of these changes on the conformation of the ethenylsulfone moiety.

The title molecule contains three nearly planar segments, namely, the benzopyranone group, the phenyl

@C10 04 C6 03

Fig. 1. An ORTEP plot (Johnson, 1965) of (I) with ellipsoids at the 50% probability level.